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Abstract. Many crystalline networks can be viewed as decorations of triply periodic minimal surfaces. Such
surfaces are covered by the hyperbolic plane in the same way that the Euclidean plane covers a cylinder.
Thus, a symmetric hyperbolic network can be wrapped onto an appropriate minimal surface to obtain a
3d periodic net. This requires symmetries of the hyperbolic net to match the symmetries of the minimal
surface. We describe a systematic algorithm to find all the hyperbolic symmetries that are commensurate
with a given minimal surface, and the generation of simple 3d nets from these symmetry groups.

PACS. 61.50.Ah Theory of crystal structure, crystal symmetry; calculations and modeling – 89.75.Hc
Networks and genealogical trees – 02.20.-a Group theory – 02.40.-k Geometry, differential geometry, and
topology

1 Introduction

Network, or reticular, models are widely used descrip-
tions of three-dimensional structure in chemistry. Nature
provides a rich set of examples for us to study, e.g. the
covalent bonding structure of crystalline minerals, the
alumino-silicate backbone of zeolites, and metal-organic
frameworks. Chemists interested in synthesizing materials
with particular properties need to know what structures
are possible, and which are the most likely to form. Sys-
tematic techniques for generating 3D periodic networks
are still being developed and are yet to provide a com-
plete enumeration of possible network structures [1–5].

Our approach generates 3D Euclidean networks by
wrapping 2D hyperbolic nets onto triply periodic minimal
surfaces (TPMS). Formally this is done by constructing a
covering map from the hyperbolic plane onto the minimal
surface. Periodic 3D nets are obtained only when the sym-
metries of the hyperbolic net and the covering map are
commensurate with the symmetries of the surface. This
paper focuses on group theoretic aspects of the projection
from 2D hyperbolic space into 3D Euclidean space. The
work follows a number of earlier explorations of the route
to 3D structure from 2D curved space; a brief overview
follows.

We view 3D crystalline reticulations as decorations of
TPMS — a concept that was recognised first by solid state

a e-mail: vanessa.robins@anu.edu.au

chemists 20 years ago as a clue to understanding com-
plex covalent frameworks, particularly alumino-silicate ze-
olites and related materials [6,7]. More recent advances
in the differential geometry of TPMS [8] and in tiling
theory [9–12] are proving indispensable to progress. The
Euclidean geometry of a TPMS is governed by the prop-
erty that its Gauss map (the map of surface normal vec-
tors) is a tiling of the 2-sphere. Indeed, an enumeration
of simple “regular” TPMS arises by deriving all discrete
tilings of the 2-sphere [13]. The symmetries of the Gauss
map are readily “mutated” to deduce the in-surface 2D
hyperbolic group of the resulting TPMS. The advent of
orbifold theory by Macbeath and Thurston [14], and its
later simple description using the notation invented by
Conway [15,16] allows for efficient numerical coding of 2D
hyperbolic groups as well as exhaustive enumeration of
allowed hyperbolic tilings with specified orbifold symme-
try [11]. We combine tiling theory with the intrinsic geom-
etry of TPMS to build tilings of TPMS and use the tiling
topology to define embedded crystalline reticulations of
3D space. Some results have been described earlier [17–19].

The work described here continues the above investi-
gations, with an emphasis on the group theoretic aspects
of the problem. The prime motivation is to enumerate all
allowed symmetries of tilings or reticulations on a particu-
lar TPMS that retain the translational symmetries of the
oriented surface. This relies on identifying the full group
structure of the TPMS (its “hyperbolic crystallography”),
derived previously for the primitive (P ), diamond (D),
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and gyroid (G) surfaces by Sadoc and Charvolin [20]. The
examples below are limited to these simplest cubic genus-
three TPMS [8]. The approach is generic, however, and
can be extended to arbitrarily complex TPMS, once their
hyperbolic crystallography is known.

2 Covering maps for TPMS

The fundamental tool in our generation of 3D nets is a
map that wraps up the hyperbolic plane onto the peri-
odic minimal surface, f : H

2 → M . The pairing of the
hyperbolic plane with this map is called a cover. (The ex-
istence of this map is guaranteed by fundamental results
from topology [21].) A cover is a useful tool for many rea-
sons — the covering space, H

2, has simpler topology than
the original surface, M , and properties of M can be deter-
mined from the action of the covering map, f . Specifically,
it is much simpler to study symmetry groups and generate
nets in the hyperbolic plane than in 3D Euclidean space.
The complexity is shifted to finding an appropriate cover-
ing map. The next few paragraphs describe this process.

There are many possible ways to define the covering
map f : H

2 → M . We require that the cover respect
the symmetries of the given minimal surface, i.e., the in-
trinsic local surface symmetry and the Euclidean three-
dimensional translational symmetry. In essence, we define
f using an “orbifold chart” that maps a patch of the hy-
perbolic plane onto the related surface asymmetric unit
patch. This map of a single orbifold patch extends to a
map of the whole hyperbolic plane onto the whole TPMS
via a correspondence of the symmetry operations, i.e. via a
group homomorphism. Importantly, the Euclidean trans-
lational symmetries of the TPMS pull back to hyperbolic
translations. Thus, the definition of f is made almost en-
tirely by reference to the symmetry group action. This
process is best elaborated using an example.

The P, D, and G surfaces (illustrated in Fig. 1) each
have intrinsic surface symmetry related to the *246 hy-
perbolic reflection group. This relationship has a mathe-
matical basis in the complex analytic Weierstrass-Enneper
formula used to define these minimal surfaces — they are
related via a Bonnet transformation. The implications of
this for the crystallography of the P, D, G surfaces is ex-
plored in [22]. The *246 hyperbolic group is generated by
three reflections, R1, R2, and R3 whose mirror lines bound
a triangle in H

2 with corner angles of π/2, π/4, and π/6.
By applying these operations in all possible combinations,
images of the initial triangle cover the entire hyperbolic
plane. Of course, not every word over {R1, R2, R3} gives a
unique image, there is a set of relations for the group gen-
erated by the following: R2

1 = R2
2 = R2

3 = I (the identity)
and (R1R2)2 = (R2R3)4 = (R1R3)6 = I.

Sadoc and Charvolin [20] found that these three
closely-related surfaces each have a disk-like translational
patch in E

3, and that these pull back to the same do-
decagon in the hyperbolic plane, as illustrated in Figure 2.
There are six hyperbolic translations that pair opposite
edges of the dodecagon, and generate a normal subgroup
of *246 with orbifold symbol ooo. The translations were

defined in [20] and are rewritten here in terms of the
*246 reflections:

t1 = (R3R1R3R1R3R2)2 (1)
t2 = R3R1R3t1R3R1R3

t3 = (R1R3)2t1(R3R1)2

τ1 = (R3R1R2)2(R3R1)2R2R3R2R1R3R1

τ2 = R1R3R1τ1R1R3R1

τ3 = R3τ1R3.

These translations satisfy the following identity in H
2:

τ1t2τ
−1
3 t−1

1 τ2t3τ
−1
1 t−1

2 τ3t1τ
−1
2 t−1

3 = I. (2)

Each surface has a different covering map that can
be compactly described by defining how the hyperbolic
translations above map to Euclidean translations. For the
P -surface, fP (t1), fP (t2), and fP (t3) are linearly indepen-
dent in E

3 and commute, with

fP (τ1) = fP (t−1
2 t3), (3)

fP (τ2) = fP (t−1
3 t1), and

fP (τ3) = fP (t−1
1 t2).

For the D-surface fD(t1), fD(t2), and fD(τ3) are a com-
muting linearly independent set, with

fD(t3) = fD(t−1
1 t−1

2 ), (4)
fD(τ2) = fD(t1τ3), and

fD(τ1) = fD(t−1
2 τ3).

Lastly, for the Gyroid, fG(t1), fG(t2), and fG(t3) are again
independent with

fG(τ1) = fG(t−1
1 t−1

2 ), (5)

fG(τ2) = fG(t−1
2 t−1

3 ), and

fG(τ3) = fG(t−1
3 t−1

1 ).

In the following section we explain how these hyperbolic
groups and covering maps are used to find all symmetry
groups commensurate with a given surface.

3 Enumeration of commensurate symmetries

Our goal is to find all sub-symmetries, G, that are com-
mensurate with the intrinsic symmetry, S, of a given min-
imal surface. Algebraically, G must be a subgroup of S
and a supergroup of the euclidean translation group, T .
An elementary result from group theory [23] tells us that
such groups G satisfying T ⊂ G ⊂ S are in one-to-
one correspondence with subgroups of the quotient group:
G̃ ⊂ S/T .

The covering maps defined in the previous section al-
low us to work with hyperbolic groups rather than the
more complex surface groups. For the P, D and G sur-
faces, we must enumerate all subgroups of

∗246/[t1 = t2 = · · · = τ3 = I].
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Fig. 1. Anticlockwise from bottom left: A tiling of the hyperbolic plane by dodecagons, twelve around each vertex; the P, G,
and D minimal surfaces built from the translational units in Figure 2.

Fig. 2. Anticlockwise from bottom left: The dodecagonal translational patch in the hyperbolic plane; corresponding surface
patches for the P, G, and D minimal surfaces. The black and grey triangles are *246 fundamental domains — there are 96 such
triangles in the dodecagonal translation unit, corresponding to the 96 elements of *246/ooo.



368 The European Physical Journal B

Although the hyperbolic group *246 is infinite, the quo-
tient group is finite, so enumerating these subgroups is a
simple matter for the computational discrete algebra pack-
age, GAP (Groups, Algorithms and Programming) [24].
The result from GAP is a list of finitely presented groups,
with generators in the quotient group. Adding back in the
hyperbolic translation subgroup generators, {t1, . . . , τ3}
and using GAPs group isomorphism tools, gives us a list
of finitely presented subgroups of *246.

There is no unique way to represent such groups, and
we encounter the perpetual problem of group theory: find-
ing an isomorphism from a given group to a canonical
form. In this context, however, there is a solution — dis-
crete groups of isometries of the sphere, euclidean, and
hyperbolic plane are characterised by their orbifold (the
“orbit manifold” defined by Thurston [14]). Conway de-
vised an elegant symbolic notation that encodes the orb-
ifold structure [15,16]. We give a brief synopsis of this
notation in Appendix A. The orbifold symbol is easily
computed from any tiling with the given group symme-
try [12]. Therefore, we construct a tiling for each subgroup
and then compute the orbifold symbol from this tiling.

We start by building the fundamental tiling for the
hyperbolic surface group *246. This tiling consists of the
black and white triangles illustrated in Figure 2. Each tri-
angle is labelled by the element of *246 that maps a fixed
initial triangle onto this new triangle. We obtain a unique
minimal word for each group element using word enumer-
ation and reduction algorithms (for example via the KB-
MAG package [25] which is an extension to GAP). The
adjacency information for the triangles is induced from
the initial triangle neighbours as follows. Recall that the
initial triangle is bounded by the mirror lines for the three
reflections R1, R2, and R3 so the three neighbouring tri-
angles will have the labels R1, R2, and R3. We then map
this adjacency pattern to each image of the initial tri-
angle: the triangle R1 will therefore have the neighbours
R2

1 = I, R2R1, R3R1, and so on.

For a given subgroup, we use coset word enumeration
algorithms from KBMAG to determine which elements of
*246 are equivalent under the subgroup action. (The tri-
angles in the original fundamental tiling are all equivalent
under *246, so the subgroup action breaks this symme-
try.) The subgroup fundamental domain is a grouping of
non-equivalent *246 triangles. The grouping is not unique
(except for kaleidoscopic groups where the orbifold symbol
has the form *abc. . .) but KBMAG always gives an ini-
tial subgroup domain corresponding to the non-equivalent
words of minimal length. Any particular choice of sub-
group domain generates a new tiling of H

2, with tile ad-
jacency induced by the original *246 triangle adjacencies.
Finally we use combinatorial tiling algorithms [12] to com-
pute the orbifold symbol. The results of this process are
presented in Table 1 of Appendix B. Further information
is available online [26] where we present a graph of the
relationships between subgroups and illustrations of each
subgroup symmetry in the hyperbolic plane.

4 From subgroup domains to periodic nets

Once we know the subgroup domains and their adja-
cency pattern it is straightforward to generate a vertex-
transitive net with the symmetry of the subgroup. This
is achieved by putting a single vertex in each subgroup
domain, then joining vertices by an edge if the two do-
mains are adjacent. The result is a periodic net in the
hyperbolic plane. Note that this net is not unique for a
given subgroup because the choice of subgroup domain is
non-unique.

Careful use of word reduction with respect to the trans-
lation subgroup T gives us explicit knowledge of the trans-
lational unit for the hyperbolic net and the connections
between nodes in successive translational cells. For exam-
ple, the following hyperbolic net comes from the 22222222
(28) orbifold, with vertex 1 being in the identity domain,
I, and vertex 2 in (R1R3)3:

1 1 τ1, 1 2 I,

1 2 t−1
1 , 1 2 t2,

1 2 t3, 1 2 τ−1
2 ,

1 2 τ3, 2 2 τ1.

Each triple above represents an edge: the first entry de-
notes one vertex in the initial translational cell and the
other two entries denote the second vertex type and its
cell location.

The hyperbolic net topology is easily translated into a
three-dimensional euclidean net topology via the covering
map. To map the above net onto the P surface we can
set fP (t1), fP (t2), fP (t3) to the unit x, y, z-translations
respectively, with the τi defined as in (3). The euclidean
net topology is then

1 1 (0,−1, 1) 1 2 (0, 0, 0)
1 2 (−1, 0, 0) 1 2 (0, 1, 0)
1 2 (0, 0, 1) 1 2 (−1, 0, 1)
1 2 (−1, 1, 0) 2 2 (0,−1, 1).

Now that we have the net topology, we need to assign
coordinates to the vertices. This can be done in a num-
ber of ways including (i) a direct map from the hyperbolic
plane onto the periodic minimal surface [17,27], (ii) equi-
librium (or barycentric) placements [28], or (iii) relaxation
according to an energy potential that is minimized by
equal edge-lengths and angles [13].

5 Isomorphic subgroups

A close examination of Table 1 shows that many sub-
groups occur as conjugate families, and that the same
orbifold symbol can appear more than once. Two sub-
groups with the same orbifold symbol are isomorphic so
are different representations of the same abstract symme-
try. A net with a given symmetry which is mapped into
two isomorphic subgroups gives two hyperbolic nets that
are necessarily isomorphic in H

2, but this isomorphism
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may be broken once they are projected into E
3. Whether

or not the subgroup isomorphism is preserved can be de-
termined by studying the action of the isomorphism on
the surface relations induced by the covering map.

First consider the case of conjugate subgroups, A, B ⊂
S, the surface-intrinsic symmetry group. Geometrically,
conjugate subgroups appear as exactly the same pat-
tern in H

2 only shifted with respect to the original
identity element of S. Algebraically it means that there
is a fixed group element, r ∈ S such that for every
a ∈ A, there is a b ∈ B with a = rbr−1. Now con-
sider the subgroup of A generated by the surface re-
lations RA = {rA1, rA2, . . . rAn}, these elements of A
map to the identity in E

3 under the covering map:
f(rAi) = I. Under the conjugacy operation this subgroup
of A maps to a subgroup of B, with generating elements
RB = {rrA1r

−1, . . . , rrAnr−1}. Then the covering map
acts as follows: f(rrAir

−1) = f(r)f(rAi)f(r−1) =
f(r)If(r)−1 = I. It follows that RB defines the same sur-
face relations as RA, and therefore conjugate subgroups
give rise to isomorphic patterns in E

3.
Next we examine the case of isomorphic, non-conjugate

subgroups, G and H ⊂ S. Although G and H have the
same orbifold symbol, they sit inside the parent group S
differently and the patterns of their subgroup domains in
H

2 are not isometric. Let the isomorphism between the
groups be φ : G → H , and let RG, RH denote the surface-
relation subgroups expressed in G- and H-elements re-
spectively. Then the covering map preserves the isomor-
phism of G and H only in the case that φ(RG) = RH .

As an example, we present vertex-transitive nets de-
rived from two subgroups with orbifold *2244 (numbers
103 and 107 in Tab. 1). The pattern of the subgroup do-
mains and corresponding 3D nets are illustrated in Fig-
ure 3. We can see directly from the pattern of subgroup
domains that there is no isomorphism from one group to
the other that preserves the translational unit. In sub-
group 107, a long edge of the dodecagon passes along the
π/4 − π/4 edge of a subgroup domain, but this is not
the case in the other subgroup, 103. The four-coordinated
vertex-transitive nets that arise from these subgroups have
4-rings and 8-rings in the hyperbolic plane, and the pro-
jection into E

3 produces 4-rings in one case, and 6-rings in
the other. We recognize the net from subgroup 107 as be-
ing the alumino-silicate backbone of the zeolite ACO [29]
and the net derived from subgroup 103 as ATN [30].

Finally, we study what happens when a given subgroup
is mapped onto two different surfaces. This situation is
analogous to the previous one, except that we must study
an automorphism of the subgroup onto itself, rather than
an isomorphism between two different versions of the same
symmetry. If there is an automorphism of the subgroup
that maps one set of surface relations onto the other sur-
face relations (e.g. the P onto the D) then we will get
isomorphic patterns in E

3, otherwise not.
We finish with a simple example of three different nets

obtained from the same hyperbolic pattern of four reg-
ular hexagonal tiles meeting at each vertex (illustrated
in Fig. 4). The hyperbolic net can arise as the vertex-

transitive fundamental net for the 6222 group (number 93
in Tab. 1), and also from non-fundamental tilings of
higher symmetry. When mapped onto the P , D, and G
surfaces respectively, we obtain frameworks familiar to
solid state chemists as the aluminosilicate backbone of
sodalite (the zeolite SOD) ([31], p. 315), niobium oxide,
NbO ([31], p. 316), and S* (a lattice complex derived
from an 8-coordinated sphere packing [31], p. 320 and [32],
Tab. 14.3).

6 Conclusions

The output of this approach — 3D crystalline reticulations
— is similar to that of the program of O’Keeffe, Friedrichs
et al. [3–5]. The latter use tiling theory in 3D euclidean
space, we confine tiling aspects to 2D hyperbolic space.
Both approaches have relative advantages and disadvan-
tages. The 3D euclidean approach is intuitively more clear,
at the (considerable!) expense of having to work in three
flat instead of two curved dimensions. Our technique is
limited by the choice of TPMS, but extends to include
multiple interwoven networks as well as rod and helical
packings [33]. Most importantly, both techniques produce
very large lists of examples once the allowed symmetries
of reticulations in 3D are decreased (Friedrichs’ approach)
or TPMS genus increases (our approach). Sensible filters
must be applied for practical purposes. Those filters result
in complementary results for both approaches, with sig-
nificant overlap for the simplest examples. These reasons
encourage us to continue on our path.

The authors thank Michael O’Keeffe for identifying the net at
the bottom right of Figure 3 as ATN.

Appendix A: Conway’s orbifold notation
for 2D discrete groups

Every discrete group of symmetries, S, acting on a 2D
space of constant curvature K (i.e. H

2, E2, S2) is uniquely
characterised by its “orbit manifold” or orbifold — a
quotient of K by the action of S. Two-dimensional symme-
tries are rotations about a point, reflections in (possibly in-
tersecting) mirror lines, translations, and glide reflections.
These induce respectively, cone points, boundaries, han-
dles and cross-caps in the orbifold. An orbifold is there-
fore a compact connected 2d manifold with boundary.
Any such manifold is described by starting with a sphere,
removing discs to generate boundary components, then
adjoining handles or cross-caps. The orbifold symbol is
a compact encoding of this topology and has the gen-
eral form: o...oABC...*ab...*st...x...x. The special symbols
o,*, and x represent the topological features of a handle,
boundary component, and cross-cap respectively. An orb-
ifold has a metric induced from its parent space, K, so
it can also have distinguished points. In particular, the
upper-case letters represent cone points where the total
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Fig. 3. Top: Two subgroup domain patterns with orbifold symbol *2244 (left image is from subgroup 107, right from 103
in Tab. 1). These kaleidoscopic subgroup domains are fixed by mirror lines that bound a quadrilateral with corner an-
gles π/2, π/2, π/4, π/4. Each subgroup domain is assigned a different colour (seen in the electronic version). In each case
the coloured region is a single translation domain of the subgroup T , and has the same area as the original dodecagon (shown as
the black outline). Bottom: The corresponding vertex-transitive nets projected onto the P surface and then relaxed to equalize
edge lengths and angles.

Fig. 4. The hyperbolic net with Schläfli symbol 6.6.6.6 is projected onto the P, D, and G surfaces to give 3D euclidean nets
sodalite, NbO, and S*.

surface angle is 2π/A, rather than 2π. The lower-case let-
ters following each star, *ab..., list corner angles π/a, π/b,
as they occur in cyclic order around a boundary com-
ponent. For example, o** is a torus with two smooth
boundary components; *22*22 is a cylinder for which both
boundary components have two corners of π/2; 22xx has
two cone points of order 2 (angle π) and two cross-caps.

Appendix B: The commensurate subgroups

In this appendix we present the subgroups commensurate
with the P, D, and G surfaces. In Table 1 we list each
subgroup orbifold, its index in *246, the number of conju-

gate subgroups of this symmetry, and generators for the
subgroup in the quotient group *246/T (the translations
in (1) must be added to obtain generators for the full
group). There is a complex set of relations between these
subgroups which is illustrated by a graph of the maxi-
mal subgroup lattice shown in Figure 5. This lattice is
also available in a large high-resolution format via the on-
line supplementary material [26]. In the online material
each node of the lattice links to a subgroup record. We
include four sets of example images from these subgroup
records in Figure 6. These examples illustrate the variety
of symmetry operations that occur in the subgroups from
translations to glide reflections, rotations and reflections
of orders 2, 3, 4, and 6.
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Fig. 5. The lattice of maximal subgroup relations for the 131 conjugacy classes of Table 1. The graph layout was generated
using the Graphviz package [34].
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Table 1. Subgroups of *246 commensurate with the P, D, G surfaces.

orbifold
symbol

index
conjugacy
class size

subgroup generators in *246/T

1 ooo 96 1 identity
2 22222222 48 1 R3R1R3R1R3R1

3 xxxx . . R1R2R3R2R3R1R3R2R3

4 xxxx . . R1R2R3R1R2R3R2R1R3

5 xxxx 48 3 R1R2R3R1R3R1R3

6 o** . . R2

7 o2222 . . R3R2R3R2

8 oo . . R2R3R1R3R2R1R3R1

9 **xx 48 6 R1

10 **xx . . R3

11 o2222 . . R2R1

12 oo . . R3R1R3R1R3R2

13 o33 32 4 R3R1R3R1

14 222222 24 1 R3R2R3R2, R1R3R2R3R2R1

15 2222x . . R3R1R3R1R3R1, R1R2R3R1R2R3R2R1R3

16 222222 24 3 R2R1, R3R1R3R2R3R2R1R3

17 4444 . . R3R2

18 o22 . . R3R2R3R2, R1R3R1R3R2R1

19 22xx . . R3R2R3R2, R1R2R3R1R2R3R1

20 22** . . R1, R3R1R3R2R3R2R1R3

21 o22 . . R3R2R3R2, R3R1R3R2R3R1

22 22** . . R2, R3R1R3R2R3R2R1R3

23 2222* . . R2, R3R1R3R1R3R1

24 o22 . . R3R2R3R2, R2R3R1R3R2R1R3R1

25 *22*22 . . R2, R3R2R3

26 22xx . . R3R2R3R2, R1R2R3R2R3R1R3

27 222222 . . R3R2R3R2, R3R1R3R1R3R1

28 *22*22 . . R3, R2R3R2

29 22xx . . R3R2R3R2, R1R2R3R1R3R1R3

30 o* . . R2, R3R1R2R3R2R1R3R1

31 xxx . . R1R2R3R1R3R1R3, R3R1R2R3R2R1R3R1

32 22xx . . R3R2R3R2, R1R3R1R2R3R1R3

33 **x 24 6 R1, R3R1R3R1R3R2

34 *2222x . . R1, R2

35 22*x . . R2R1, R3R1R3R1R3

36 22*2222 . . R1, R3R1R3R1R3

37 22*x . . R1, R3R2R3R1R3R2R3R2

38 *** . . R1, R3R1R2R3R2R1R3

39 **x . . R2, R3R1R3R1R3

40 *xx . . R1, R3R1R2R3R2R1R3R2

41 *xx . . R2, R1R3R1R2R3R1R3

42 22*x . . R2R1, R3R1R2R3R2R1R3

43 o22 . . R2R1, R3R1R2R3R2R1R3R1

44 222222 . . R2R1, R3R1R3R1R3R1

45 *xx . . R3, R2R3R1R2R3R2R3R1

46 3xx 16 4 R3R1R3R1, R1R2R3R1R2R3R2

47 *3*3 . . R1, R3R1R3

48 *3*3 . . R3, R1R3R1

49 32222 . . R3R1R3R1, R2R3R2R1R3R2

50 6226 . . R3R1

51 o3 . . R3R1R3R1, R2R3R1R2R3R2R3R1

52 3xx . . R3R1R3R1, R2R3R1R2R3R2R3

53 222x 12 1 R3R2R3R2, R1R3R2R3R2R1, R1R2R3R1R3R1R3

54 22222 . . R3R2R3R2, R1R3R2R3R2R1, R3R1R3R1R3R1

55 *222222 . . R2, R3R2R3, R1R3R2R3R1

56 2xx 12 3 R3R2R3R2, R1R3R1R3R2R1, R1R2R3R2R3R1R3
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Table 1. Continued.

orbifold
symbol

index
conjugacy
class size

subgroup generators in *246/T

57 2*2222 . . R1, R2, R3R1R3R2R3R2R1R3

58 222x . . R3R2R3R2, R3R1R3R1R3R1, R1R2R3R1R2R3R1

59 2** . . R1, R3R1R3R1R3R2, R3R1R2R3R2R1R3R2

60 **22 . . R1, R3R2R3

61 o2 . . R3R2R3R2, R1R3R1R3R2R1, R3R1R3R2R3R1

62 44* . . R1, R3R1R3R2R1R3

63 2*x . . R1, R2R3R1R2R3R1R3

64 *4444 . . R2, R3

65 222* . . R1, R3R2R3R2

66 22*22 . . R2, R3R2R3, R1R3R2R1R3R1

67 22*22 . . R2, R3R2R3, R3R1R3R1R3R1

68 *2*2 . . R2, R3R2R3, R3R1R3R2R3R1

69 *22x . . R2, R3R2R3, R1R3R1R2R3R1R3

70 **22 . . R2, R3R1R3R1R3, R3R1R2R3R2R1R3

71 222* . . R2, R3R1R3R1R3R1, R3R1R2R3R2R1R3R1

72 2*x . . R2, R1R3R1R2R3R1R3, R1R3R1R3R2R1R3

73 2** . . R2, R3R2R3R1

74 44* . . R2, R3R1R3R2R1R3

75 22*22 . . R2R1, R3R1R3R1R3, R3R1R2R3R2R1R3

76 22222 . . R2R1, R3R1R3R1R3R1, R3R1R2R3R2R1R3R1

77 22222 . . R2R1, R3R2R3R1

78 2442 . . R2R1, R3R1R3R2R1R3

79 222x . . R2R1, R1R3R1R2R3R1R3

80 *2*2 . . R3, R2R3R2, R1R3R1R3R2R1

81 22*22 . . R3, R2R3R2, R1R3R2R3R2R1

82 *22x . . R3, R2R3R2, R1R2R3R1R2R3R1

83 *222222 . . R1, R3R1R3R1R3, R3R1R2R3R2R1R3

84 44x . . R3R2, R1R2R3R1R2R3R1

85 2xx . . R3R2R3R2, R3R1R3R2R3R1, R1R2R3R1R2R3R1

86 4224 . . R3R2, R1R3R2R3R2R1

87 4224 . . R3R2, R1R3R1R3R2R1

88 2** 12 6 R1, R3R1R3R1R3R2, R3R1R2R3R2R1R3

89 22*22 . . R1, R3R1R3R1R3, R3R1R2R3R2R1R3R2

90 2*2222 . . R1, R2, R3R1R3R1R3

91 *22* . . R1, R2, R3R1R2R3R2R1R3

92 2323 8 1 R3R1R3R1, R3R2R3R2

93 6222 8 4 R3R1, R2R3R2R1R3R2

94 62x . . R3R1, R1R2R3R1R2R3R2

95 *3x . . R3, R1R3R1, R1R2R3R1R2R3R2

96 *6262 . . R1, R3

97 22*3 . . R1, R3R1R3, R2R3R2R1R3R2

98 *3x . . R1, R3R1R3, R2R3R1R2R3R2R3

99 22*3 . . R3, R1R3R1, R2R3R2R1R3R2

100 2*222 6 1 R2, R3R2R3, R1R3R2R3R1, R3R1R3R1R3R1

101 *22222 6 3 R1, R2, R3R1R3R1R3, R3R1R2R3R2R1R3

102 *22222 . . R1, R2, R3R2R3

103 *2442 . . R1, R3R2R3, R3R1R3R1R3

104 2*222 . . R1, R3R2R3R2, R3R1R3R1R3

105 **2 . . R1, R3R2R3, R3R1R3R1R3R2

106 4*22 . . R1, R2, R3R1R3R2R1R3

107 *4422 . . R2, R3, R1R3R2R3R1

108 2*44 . . R2, R3, R1R3R2R1R3R1

109 24* . . R2, R3R2R3R1, R3R1R3R1R3R1

110 24* . . R1, R3R2R3R2, R3R1R3R1R3R2

111 22*2 . . R2, R3R2R3, R1R3R2R1R3R1, R3R1R3R1R3R1

112 **2 . . R2, R3R2R3R1, R3R1R3R1R3

113 22*2 . . R2R1, R3R2R3R1, R3R1R3R1R3
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Fig. 6. Each frame above shows a Poincaré disc with a coloured region of 96 *246 triangles — an area equal to that of the trans-
lation unit dodecagon. In the top row the colours are assigned so that each subgroup domain has a different colour. In the bottom
row the colours are assigned so that *246 triangles have the same colour when they are equivalent under the subgroup symmetry
action. Similar figures for all 131 subgroups are available online at http://wwwrsphsse.anu.edu.au/∼vbr110/PDGdata/ [26].

Table 1. Continued.

orbifold
symbol

index
conjugacy
class size

subgroup generators in *246/T

114 2224 . . R2R1, R3R2R3R1, R3R1R3R1R3R1

115 3*22 4 1 R2, R3R1R3R1

116 434 . . R3R2, R1R3R2R1

117 2*33 . . R1, R3R1R3, R3R2R3R2

118 2322 . . R2R1, R3R1R3R1

119 *3232 . . R3, R1R3R1, R2R3R2

120 266 . . R3R1, R2R3R2R1

121 23x . . R1R2R3, R1R3R2

122 2*62 4 4 R1, R3, R2R3R2R1R3R2

123 *2422 3 3 R1, R2, R3R2R3, R3R1R3R1R3

124 *2232 2 1 R1, R2, R3R1R3

125 *434 . . R2, R3, R1R3R1

126 6*2 . . R2, R3R1

127 *662 . . R1, R3, R2R3R2

128 4*3 . . R1, R3R2

129 2*32 . . R2R1, R3, R1R3R1

130 462 . . R2R1, R3R1

131 *642 1 1 R1, R2, R3
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